Evolution of floral symmetry
نویسندگان
چکیده
Flowers can be classified into two basic types according to their symmetry: regular flowers have more than one plane of symmetry and irregular flowers have only a single plane of symmetry. The irregular condition is thought to have evolved many times independently from the regular one: most commonly through the appearance of asymmetry along the dorso-ventral axis of the flower. In most cases, the irregular condition is associated with a particular type of inflorescence architecture. To understand the molecular mechanism and evolutionary origin of irregular flowers, we have been investigating genes controlling asymmetry in Antirrhinum. Several mutations have been described in Antirrhinum, a species with irregular flowers, that reduce or eliminate asymmetry along the dorso-ventral axis. We describe the nature of these mutations and how they may be used to analyse the molecular mechanisms underlying floral evolution.
منابع مشابه
Changes in expression pattern of the teosinte branched1-like genes in the Zingiberales provide a mechanism for evolutionary shifts in symmetry across the order.
PREMISE OF THE STUDY Floral symmetry is a trait of key importance when considering floral diversification because it is thought to play a significant role in plant-pollinator interactions. The CYCLOIDEA/TEOSINTE BRANCHED1 (CYC/TB1)-like genes have been implicated in the development and evolution of floral symmetry in numerous lineages. We thus chose to investigate a possible role for these gene...
متن کاملEvolutionary trends in the flowers of Asteridae: is polyandry an alternative to zygomorphy?
BACKGROUND AND AIMS Floral symmetry presents two main states in angiosperms, actinomorphy (polysymmetry or radial symmetry) and zygomorphy (monosymmetry or bilateral symmetry). Transitions from actinomorphy to zygomorphy have occurred repeatedly among flowering plants, possibly in coadaptation with specialized pollinators. In this paper, the rules controlling the evolution of floral symmetry we...
متن کاملSimilar Genetic Mechanisms Underlie the Parallel Evolution of Floral Phenotypes
The repeated origin of similar phenotypes is invaluable for studying the underlying genetics of adaptive traits; molecular evidence, however, is lacking for most examples of such similarity. The floral morphology of neotropical Malpighiaceae is distinctive and highly conserved, especially with regard to symmetry, and is thought to result from specialization on oil-bee pollinators. We recently d...
متن کاملFloral Symmetry Affects Bumblebee Approach Consistency in Artificial Flowers
Bilateral symmetry has evolved from radial symmetry in several floral lineages, and multiple hypotheses have been proposed to account for the success of this floral plan. One of these hypotheses posits that bilateral symmetry (or, more generally, a reduced number of planes of floral symmetry) allows for more precise pollen placement on pollinators. Greater precision would maximize the efficacy ...
متن کاملLinking floral symmetry genes to breeding system evolution.
Understanding the genetic basis of ecologically important traits is a major focus of evolutionary research. Recent advances in molecular genetic techniques should significantly increase our understanding of how regulatory genes function. By contrast, our understanding of the broader macro-evolutionary implications of developmental gene function lags behind. Here we review published data on the ...
متن کاملEvolution and Expression Patterns of CYC/TB1 Genes in Anacyclus: Phylogenetic Insights for Floral Symmetry Genes in Asteraceae
Homologs of the CYC/TB1 gene family have been independently recruited many times across the eudicots to control aspects of floral symmetry The family Asteraceae exhibits the largest known diversification in this gene paralog family accompanied by a parallel morphological floral richness in its specialized head-like inflorescence. In Asteraceae, whether or not CYC/TB1 gene floral symmetry functi...
متن کامل